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Moving meshes, conservation laws and least squares
equidistribution
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SUMMARY

In this paper a least squares measure of a residual is minimized to move an unstructured triangular
mesh into an optimal position, both for the solution of steady systems of conservation laws and for
functional approximation. The result minimizes a least squares measure of an equidistribution norm,
which is a norm measuring the uniformity of a �uctuation monitor. The minimization is carried out
using a steepest descent approach. Shocks are treated using a mesh with degenerate triangles. Results
are shown for a steady-scalar advection problem and two �ows governed by the Euler equations of
gasdynamics. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshes are a signi�cant part of CFD and heat transfer calculations. One challenge is to
extract the optimal bene�t from the mesh, whether in terms of the accuracy of the solution
or a relevant physical measurement. Mesh movement and mesh subdivision are the prime
candidates: here we discuss mesh movement.
The governing equations of CFD and heat transfer arise from the balance laws of mass,

momentum and energy written in a suitable reference frame. In order to write the �uid
variables as functions of the spatial variables it is necessary to specify the frame, e.g. Eulerian
(�xed mesh), Lagrangian (mesh moving with the �uid velocity) or some other frame, perhaps
related to mesh quality, error minimization or equidistribution. Realistically, there is only one
choice of viewing frame for all the dependent variables in a problem and this is also the case
when designing mesh movement.
The main di�culties associated with mesh movement are the complexity of solving the non-

linear mesh equations and the problem of mesh tangling. A useful approach is to generate the
mesh (and even the solution) locally node by node and carry out sweeps through the mesh,
greatly reducing the complexity of individual steps and allowing much better control of mesh
tangling.
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4 M. J. BAINES

Many mesh movement algorithms depend on optimization, using functionals measuring for
example mesh quality or error measures or some other desirable feature [1; 2]. For prob-
lems derived from a variational principle both the mesh and the approximate solution can
be determined from the same functional by optimizing in an appropriate �nite-dimensional
space [3–5].
For problems which cannot be derived from a variational principle simultaneous generation

of the mesh and solution can be achieved by using a least squares functional in lieu of a
variational principle, albeit with some extra complications. Meshes and solutions for simple
�ow problems have been generated in this way, using either global or local methods of
solution [6–8].
For more realistic problems in CFD and heat transfer, separate principles for the mesh

and the solution are usually applied, allowing the full power of standard algorithms to be
used for the solution [9]. For example, �uctuation distribution �nite volume schemes may be
used in conjunction with mesh movement optimization and this is the programme followed
here Reference [10]. Since the mesh principles naturally involve the solution of the governing
equations, the two principles do not decouple.
In this paper we shall motivate and develop an approach to the generation of unstructured

triangular meshes for conservation laws based on minimizing the least squares error of �uc-
tuations. The same principle can also be applied to the problem of function equidistribution
using a vector-valued monitor function and this is discussed in some detail. A descent method
is used to carry out the minimizations, generating a simple adaptive mesh movement rule for
function equidistribution and giving insights into mesh movement for �uctuation equidistribu-
tion. The approach may be combined with a �ux distribution �nite volume scheme to obtain
the solution of steady-state problems on optimal meshes within an iterative algorithm. Whilst
the use of modern �nite volume schemes is preferable to a least squares approach when de-
termining the solution, there is a role for mesh and solution least squares minimizations in a
shock �tting context when moving the mesh to adjust the position of shocks using degenerate
triangles [11].
The layout of the paper is as follows. After sections on conservation laws and the status

of �uctuation splitting when the mesh is allowed to move, we describe the mesh movement
mechanism that we use. This is based on l2 minimization and is motivated by its equivalence
with the minimization of an equidistribution norm in a least squares sense [12]. A similar
argument is applicable to the problem of function approximation in several dimensions using
a vector-valued equidistributed quantity. Descent methods are described in both cases. Re-
sults are shown for a scalar problem and for a problem governed by the Euler equations of
gasdynamics, both using least squares for the mesh in conjunction with a �uctuation split-
ting scheme for the solution, as well as for an Euler equations case using least squares on
degenerate triangles.

2. SYSTEMS OF CONSERVATION LAWS

A system of conservation laws (e.g. the Euler equations) can be written as

div f(u(x))=0 (1)
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MOVING MESHES, CONSERVATION LAWS AND LEAST SQUARES 5

where u(x) is the vector of conserved variables and f(u(x)) is the �ux function. The �ux
function is a known function of u while u(x) is to be determined.
Integral forms of the conservation law are∮

@�
f(u(x)):n̂ d�=

∫
�
div f(u(x)) d�=0 (2)

where d� is an element of the boundary @� of � and n̂ is the inward unit normal to @�.

3. FLUCTUATIONS

Let the plane polygonal domain � be divided into triangles Tk and let Uj be an approximate
nodal solution value at a vertex j, which depends on the set of nodal positions {X } in
the triangulation. Let the function f(u(x)) be approximated by a continuous piecewise linear
function F with vertex values Fj= f(Uj). The values of Uj({X }) are assumed to be known
or computable at each vertex.
We de�ne a �uctuation in triangle Tk to be

�k =
∮
@Tk

F:n̂ d�=−
∫
Tk

divF dS (3)

(cf. (2)), where @Tk is the perimeter of Tk and dS is an element of area. Since F is piecewise
linear and divF is piecewise constant we may write the �uctuation as

�k =
(

3∑
�=1

1
2
(F(U(X �1)) + F(U(X �2)))N�

)
k

=−Sk(divF)k (4)

where �1; �2 are the indices of the vertices in the triangle k other than �, and the � operator
indicates the change in the argument between the ends of the side opposite node �, taken
anticlockwise. The vector

N�=(−(�Y )�; (�X )�)t (5)

is the normal to the side opposite the vertex, measured inward, having the length of that side
(see Figure 1), with the property

∑
N�=0; and Sk is the area of triangle Tk .

We thus have from the �rst of (4)

�k =−1
2

3∑
�=1
F(U(X �))

(−�Y
�X

)
�
=
1
2

3∑
�=1
(�F(U(X )))�

(−Y
X

)
�

(6)

using (5) and summation by parts.

4. FLUCTUATION SPLITTING

In �uctuation splitting schemes [13] for steady problems the �uctuations are regarded as error
measures (similar to residuals) and an iterative procedure is set up which adds a multiple of
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6 M. J. BAINES

Figure 1. A general triangular cell.

the �uctuation to the vertices of the triangle with prescribed weights, with a view to driving
them down to zero. In the well-known multidimensional upwind schemes [14; 15] the weights
are chosen so that the contribution to upwind vertices is zero and the schemes are conservative,
positive and linearity preserving. In particular, conservation is assured if the weights in each
triangle sum to unity.
The number of �uctuations is equal to the number of triangles in the mesh but the

number of unknowns is a multiple of the number of nodes, which is di�erent in
general. When the number of �uctuations exceeds the number of unknowns it is impossible
to drive all the �uctuations to zero. For �uctuation distribution schemes
convergence of the nodal updates does not then imply that the �uctuations vanish in each cell
[8].
If however, we allow the co-ordinates of the vertices to become additional unknowns of the

problem, the solution is improved. For scalar problems the number of unknowns then typically
exceeds the number of �uctuations and there are in�nitely many con�gurations which make
the �uctuations zero. A unique solution is achieved in a two-dimensional scalar problem on
a simple mesh by including just one co-ordinate per node in the list of unknowns so that
the number of unknowns is equal to the number of equations [8]. The �uctuations may then
be driven down to zero by a �uctuation splitting scheme and the result is an approximate
method of characteristics (cf. Reference [8]). For a system of two equations in two dimen-
sions on a simple mesh, with the nodes allowed to move freely, the number of unknowns
is equal to the number of equations and this has been studied in Reference [6]. For systems
such as the Euler equations the number of �uctuations remains less than the number of un-
knowns, but the inclusion of nodal variables signi�cantly reduces the dimension of the null
space.
There are many mechanisms available for moving the nodes, including mechanical ana-

logues and optimization. Here we implement an approximate equidistribution principle based
on least squares minimization, using either the �uctuations themselves or a monitor
function.
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5. LEAST SQUARES EQUIDISTRIBUTION

5.1. Fluctuations

Consider the identity

N
N∑
k=1
�t
kQ�k ≡

(
N∑
k=1
�k

)t
Q
(

N∑
k=1
�k

)
+

N∑
k=1

N∑
l=1
(�k −�l)

t Q(�i −�l) (7)

where Q is any matrix weight. The sum in the �rst term on the right-hand side of (7) is

N∑
k=1
�k =

N∑
k=1

∮
@Tk

F:n̂ d�=
∮
@�
F:n̂ d� (8)

using cancellation at internal edges. This is a small quantity (cf. (2)) but more importantly is
independent of interior values of F and interior grid locations X . Hence from (7) the weighted
least squares norm of the �uctuations on the left-hand side of (7) and the weighted norm of
the �uctuation di�erences on the right-hand side of (7) are minimized simultaneously over
interior parameters. This is Least squares Equidistribution [12].
If complete equalization of the �uctuations is possible, then the norm of the �uctuation

di�erences on the right-hand side of (7) attains its zero (as does the boundary integral (8)).
Otherwise only approximate equidistribution is achieved. But by minimizing the Least Squares
norm we determine a mesh for which �k is approximately equalized over the region in this
average sense. The result is true in any number of dimensions.
If Q=diag(qm); (m=1; : : : ; M), the weighted norms on the left- and right-hand side of (7)

(which are minimized simultaneously over interior parameters) are

M∑
m=1
qm

N∑
k=1
(�k)tm(�k)m and

M∑
m=1
qm

N∑
k=1

N∑
l=1
(�k −�l)tm(�k −�l)m (9)

5.2. Function equidistribution

We now digress to consider the problem of function approximation in multidimensions, which
can also be analyzed using this approach.
The well-known equidistribution principle in one dimension involves locating mesh points

such that a measure of an underlying given scalar function u(x) is equalized (or equidis-
tributed) over each cell [16; 17]. A function

�k =
∫ Xj

Xj−1

m(x) dx (10)

is de�ned as the desired measure of the solution u to be equidistributed, where m(x) is known
as the monitor function and depends on u(x). The mesh points Xj are found by solving ∀j
the integral equality

∫ Xj

Xj−1

m(x) dx=
∫ Xj+1

Xj
m(x) dx (11)
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For example, if the monitor function is the derivative, m(x)=du=dx (assumed positive),
then (11) becomes

u(Xj+1)− u(Xj)=
∫ Xj+1

Xj

du
dx
dx=

∫ Xj

Xj−1

du
dx
dx= u(Xj)− u(Xj−1) (12)

and then the mesh is determined by equal intercepts on the u-axis. This may also be written
as (

du
dx

)
j−�1

(Xj − Xj−1)=
(
du
dx

)
j+�2

(Xj+1 − Xj) (13)

using mean values. Similarly, if the monitor function m(x) is the derivative of the arclength
s of the underlying function u;m(x)=ds=dx and the mesh is determined by equal arcs on the
solution manifold.
Equidistribution is a one-dimensional concept. However, a higher dimensional generalization

of (11) may be de�ned in terms of a vector-valued monitor function m(x) as∫
�1
m(x) d�=

∫
�2
m(x) d� (14)

corresponding to the vector-valued equidistributed quantity (cf. (10))

�
k
=−

∫
�k

m(x) d� (15)

Introducing an equidistributing function e(x) for which m(x)=∇e(x), (14) becomes∫
�1

∇e(x) d�=
∫
�2

∇e(x) d� (16)

so that, using a form of Gauss’ Theorem, �
k
can be written (cf. (11))

�
k
=

∮
@�1
e(x)n̂ d�=

∮
@�2
e(x)n̂ d� (17)

From (17),

∑
k
�
k
=−∑

k

∫
Tk

m(x) d�= −∑
k

∫
Tk

∇e(x) d�=∑
k

∮
@Tk

e(x)n̂ d�=
∮
@�
e(x)n̂ d� (18)

through cancellation over the internal edges of the mesh, so we have that
∑

k �k is independent
of interior parameters.
Two examples of the equidistributing function e(x) are the underlying function u(x) itself

and the arclength distance on the u manifold taken in the direction of ∇u.
Now let e(x) be approximated by a continuous piecewise linear function E with vertex

values e(X ) so that ∇E is constant in each triangle. Then we can de�ne a discretized
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MOVING MESHES, CONSERVATION LAWS AND LEAST SQUARES 9

equidistributed quantity (cf. (15) and (16))

�k =
∮
@Tk

En̂ d�=−
∫
Tk

∇E dS (19)

which also satis�es the cancellation property over internal edges since

∑
k
�k = −∑

k

∫
Tk

∇E dS=∑
k

∮
@Tk

En̂ d�=
∮
@�
En̂ d� (20)

(cf. (18)), E being continuous.
Since E is assumed to be piecewise linear, then �k in (19) can be written in either of the

two forms

�k =
(

3∑
�=1

1
2
(E(X �1) + E(X �2))N�

)
k

= − Sk(∇E)k (21)

where N�=(−(�Y )�; (�X )�)t is again the normal to the side opposite the vertex �, measured
inward, having the length of that side (see Figure 1), with the property

∑
N�=0. The su�ces

�1; �2 again indicate the vertices of the triangle other than �. The �rst of (21) then gives

�k =−1
2

(
3∑
�=1
E(X �)N�

)
k

=
1
2

(
3∑
�=1
(�E)�

(−Y
X

)
�

)
k

(22)

using (5) and summation by parts.
Two examples of the equidistributing function E are a piecewise linear approximation U

to the underlying function u and an arclength equidistributing function on the manifold of U
in the direction of the gradient ∇U .
From the identity (7) with �=�; Q= I , since

∑
k �k is independent of interior points, the

l2 norm of �k and the l2 norm of the di�erences in �k are again minimized simultaneously
over interior parameters. Therefore, by minimizing

∑
k �

t
k�k we may obtain an optimal mesh

over which �k is equidistributed in this least squares sense.

6. MINIMIZING THE LEAST SQUARES NORMS

Although in principle the least squares norms on the left-hand side of (7) may be minimized
over any interior parameters (including the parameters of the solution) we shall concentrate
on minimizing with respect to nodal positions X , relying on a separate calculation using the
iterative steps of multidimensional upwinding for the solution. These iterative solution steps
do not attempt to decrease the l2 norm but rather rely on progressing to the solution through
physical states (see also Reference [18]).
In order to carry out the minimization of the least squares norm we may either use a descent

method or alternatively solve the normal equations directly. An advantage of the former is
that the functional is always reduced in an iterative step and can be monitored. Either way
the gradient of the functional is required. We shall treat the two cases of the previous section
in reverse order. We use a Lagrangian description in which F or E depends on the X ’s.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:3–19



10 M. J. BAINES

Figure 2. A local patch of elements surrounding node j.

6.1. The function approximation case

In order to calculate the gradient of
∑

k �
t
k�k with respect to the nodal variable X j we use

the representations in (21) and (22) to obtain

∇X j
∑
k
�t
k�k =2

∑
jk
(∇X j�t

jk)�jk

=
∑
jk

{
−(N tjkj(∇X jE(X j)))�jk + (�E)jkj

(
0 1
−1 0

)
�jk

}
(23)

using (5), where j is any node of the triangulation, jk runs over the triangles surrounding
node j, and jkj denotes the side of the triangle Tjk opposite node j (see Figure 2).
Since in triangle jk

(�E)jkj=(∇E)tjk
(
�X
�Y

)
jkj
=(∇E)tjk

(
0 1
−1 0

)
Njkj (24)

the gradient (23) becomes

∇X j
∑
k
�t
jk�jk =

∑
jk

{
−N tjkj(∇X jE(X j))− (∇E)tjk

(
0 −1
1 0

)
Njkj

(
0 1
−1 0

)}
�jk (25)

Using the de�nition of �jk from the second of (21) and the fact that

∇X j(E(X j))=∇e(x)|x= X j (26)

(since E is the interpolant of e) we obtain from (25)

∇X j
∑
k
�t
k�k =

∑
jk
Sjk{N tjkj∇e|x= X j + N tjkj(∇E)⊥jk}(∇E)jk (27)

where

(∇E)⊥jk =
(
0 −1
1 0

)
(∇E)jk (28)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:3–19
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Finally, approximating ∇e|x= X j by (∇E)jk in each element jk, (27) reduces to

∇X j
∑
k
�t
k�k ≈

∑
jk
Sjk(∇E)2jkN jkj (29)

An alternative expression for (29) is as follows. Let Ljkj be the length of the side of the
triangle Tjk opposite node j (see Figure 2) and X jkj be the foot of the perpendicular from X j
to that side. Then (29) becomes

∇X j
∑
k
�t
k�k ≈

1
2
∑
jk
L2jkj(∇E)2jk(X j − X jkj)=

∑
jk
wjkj(X j − X jkj) (30)

where

wjkj= 1
2L

2
jkj(∇E)2jk (31)

An approximate steepest descent method for the minimization is therefore,

X newj =X j − �j
∑
jk
wjkj(X j − X jkj) (32)

where �j is a positive relaxation parameter. Since the wjkj’s are positive, then with an appro-
priate choice of �j we obtain the iteration

X newj =X j − �j
∑

jk wjkj(X j − X jkj)∑
jk wjkj

=(1− �j)X j + �j
∑

jk wjkjX jkj∑
jk wjkj

(33)

where �j is another positive relaxation factor.
Although the right-hand side of (33) is a convex function of the X ’s if �j¡1, there are

still examples of meshes in which mesh tangling can occur. To avoid tangling it is necessary
to introduce a limiter [19; 20].
If �j¡ 1

2 the iteration matrix for (33) (written as a system) has norm¡1 giving a convergent
iteration, although convergence can be slow. Because of the inherent non-linearity only a
local minimum can be expected. The limit satis�es the normal equations (or equivalently the
approximate gradient is zero) when the X ’s satisfy

∑
jk
wjkj(X j − X jkj)=0; i:e: X j=

∑
jk wjkjX jkj∑
jk wjkj

(34)

∀j (cf. (13)). Thus X j is a convex average of the position vectors of the intersections of the
normals with the opposite side in the surrounding triangles.
The w’s depend on the underlying function u(x) through the dependence of ∇E on ∇U .

Examples of discrete equidistributing functions are E=U;M =∇U and E= S;M =∇S=√
(1 +∇U 2) where S is the arclength on the discretised manifold measured in this direc-

tion. The corresponding w’s are (cf. (31))

wjkj= 1
2L

2
jkj(∇U )2jk (35)

and

wjkj= 1
2L

2
jkj(1 + (∇U )2jk) (36)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:3–19
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The �rst of these satis�es the internal cancellation property (20) exactly but the second only
approximately.

6.2. The �uctuation

The gradient of the weighted l2 norm (9) of the �uctuation �k of (4) is

∇X j
M∑
m=1
qm

N∑
k=1
(�k)tm(�k)m=2

M∑
m=1
qm

∑
jk
(∇X j(�t

jk)m)(�jk)m (37)

Using the two representations in (6) (dropping the su�x m for convenience)

2
∑
jk
(∇X j�t

jk)�jk

=
∑
jk

{
−(∇X j F(U(X j)))tNjkj�jk +

(
0 1
−1 0

)t
(�F(U(X )))tjkj�jk

}
(38)

Since F is piecewise linear in triangle jk

(�F)jkj=(∇F)tjk
(
�X
�Y

)
jkj
=(∇F)tjk

(
0 1
−1 0

)
Njkj (39)

and

∇X j F(U(X j))=∇f |x= X j ; �jk =−Sjk(divF)jk (40)

the right-hand side of (38) becomes

∑
jk

{
−(∇f)|x=X j)tNjkj�jk +

(
0 1
−1 0

)t
(∇F(U(X )))tjk

(
0 1
−1 0

)
Njkj�jk

}
(41)

leading to

∇X j
∑
k
�t
k�k =

∑
jk
Sjk{N tjkj(∇f)|x=X j + (∇F)⊥jkN⊥

jkj}(divF(U(X )))jk (42)

where

∇F⊥=
(
0 −1
1 0

)
∇F (43)

and

N⊥
jkj=

(
0 −1
1 0

)
Njkj (44)

Approximating ∇f by (∇F)jk in triangle jk we can derive an approximate steepest descent
step for the minimization of the l2 norm of the form

X newj =X j − �j
M∑
m=1
qm

∑
jk
Sjk{(∇F(U(X )))tjkN jkj + (∇F(U(X )))⊥jkN⊥

jkj}m{(divF)jk}m (45)

where �j is a positive relaxation factor.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:3–19
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The �rst term in the curly brackets in (45) arises from the variation with X within F(U(X )),
while the second term comes from variation of the triangle areas. If U is regarded as inde-
pendent of the mesh locations the �rst term is absent.
The choice of �j is less obvious than in the previous section. A standard approach is to

use a line search or local quadratic model, and signi�cantly there is an obvious quadratic
model to be had here obtained by lagging the values of U, in the sense that these values are
temporarily frozen but updated at the next step. This is equivalent to suppressing variations
over U. The least squares norm becomes quadratic in X and there is a unique minimizer
which is easily found [21]. Similarly, the normal equations are linear and the full range of
linear solvers is accessible. However, the l2 norm may not be reduced in this approach if the
variations which are excluded are not independent of the variations which are included.
To illustrate the roles of the terms in (45) consider the scalar advection equation

a:∇u= aux + buy=0 (46)

with constant a=(a; b)t in each triangle, for which F is the scalar Ua and divF is at∇U .
The gradient of F is

∇F=
(
aUx bUx
aUy bUy

)
=(∇U )at (47)

Then the approximate steepest descent method (45) (with the q’s taken to be 1) reduces to

X newj =X j − �j
∑
jk
Sjk(at∇U )jk{(atjkN jkj)(∇U )jk + ((∇U )tjkjN⊥

jkj)a
⊥
jk} (48)

where a⊥=(b;−a) and �j is a positive relaxation factor (cf. References [6; 22]). When a
varies with u but is lagged in the iteration or when U is treated as independent of X , the
�rst term in the curly brackets in (48) vanishes and the node movement is at right angles to
a [21; 6; 22].
In this scalar case the mesh movement drives the �uctuations down almost to zero and the

mesh is very nearly characteristic [8].

7. USE OF DEGENERATE TRIANGLES

In the presence of shocks or contact discontinuities least squares methods give inaccurate
solutions which are unacceptable. One way to combat this problem is to subdivide the region
and introduce degenerate (vertical) triangles at the interface [22]. For degenerate triangles we
can still de�ne the �uctuation �k (see (3)), which vanishes when the Rankine–Hugoniot jump
conditions are satis�ed. Then by minimizing the least squares norm of �k with moving nodes
the position of the discontinuity can be adjusted, as in shock �tting methods, to approximately
satisfy these conditions [11; 21].
An approximate solution is �rst obtained by the use of a multidimensional upwinding shock

capturing scheme [11]. An initial discontinuous solution is then constructed by introducing
degenerate triangles into the regions identi�ed as containing a shock, using a shock identi-
�cation technique. (This step may be carried out manually or the degenerate triangles can
be added automatically using techniques that exist in the shock �tting literature—see for ex-
ample Reference [23]. The position of the discontinuity so formed can then be improved by
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minimizing the l2 norm of � with respect to node positions. When updating coincident nodal
positions on the shock they must have the same update (so that the cell remains degenerate).
This is obtained by minimization with respect to their common position.
The procedure may be interleaved with a descent least squares method for the solution,

which is smooth on either side of the discontinuity, allowing the descent method to be used
for the solution as well as the mesh.

8. IMPLEMENTATION

8.1. Function approximation

In the case of function equidistribution the mesh may be moved as in (33). A possible
algorithm for the implementation of this procedure is:

8.1.1. Interleaving algorithm 1
(1) Set up an initial mesh.
(2) Sample the function or carry out a least squares best �t.
(3) Adjust the mesh using the updating formula (33).
(4) Repeat from (2) until convergence.

Results from the algorithm are not shown here, being very similar to those found in Ref-
erence [19].

8.2. Conservation laws

Where the weights (31) depend on the approximate solution of a conservation law or other
PDE, a simultaneous minimization of the l2 norm over all interior parameters, both mesh
and solution values, are possible. In such an approach, which is discussed elsewhere in this
volume (see also Reference [8]), the U and X values are taken to be independent, which
contrasts with the function equidistribution approach in which an integral assumption is that
U depends on the {X }’s.
However, it is not necessary to carry out the minimization over both solution and mesh

values. The steepest descent step (33) for the mesh may be interleaved with any solution
procedure, allowing a full range of choice of methods, although monotonicity of the functional
is sacri�ced when using other methods for the solution. The descent steps may be incorporated
in an overall iterative algorithm for both the mesh and the solution in which iterative solution
updates are alternated with mesh movement descent steps. The approach can then be applied
to the solution of any PDE. This suggest the algorithm:

8.2.1. Interleaving algorithm 2
(1) Set up an initial mesh.
(2) Obtain an approximate solution of the conservation law on this mesh using a multidi-

mensional upwinding scheme.
(3) Carry out one step of an iteration procedure for the solution of the conservation law.
(4) Adjust the mesh using the updating formula (45) with qm chosen to be 1 or to pick

out the �rst component (e.g. density in the Euler equations).
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Figure 3. Circular advection with mesh movement.

Figure 4. Adapted mesh for the Euler �ow through a constricted channel.

(5) Repeat from (3) until the mesh has converged.
(6) Repeat from (2) on this mesh until the solution has also converged.

Two examples are shown in Figures 3 and 4 below.
When using degenerate triangles the algorithm is:

8.2.2. Interleaving algorithm 3
(1) Set up an initial mesh.
(2) Obtain an initial approximate solution using a multidimensional upwinding shock cap-

turing scheme.
(3) Construct an initial discontinuous solution by introducing degenerate triangles into

regions identi�ed as containing shocks.
(4) Improve the position of the discontinuity by minimizing the l2 norm of � with respect

to node positions.
(5) Improve the solution by minimizing the l2 norm of � with respect to the solution

values.
(6) Repeat from (2) until both mesh and solution have converged.

An example is shown in Figure 5 below. Note that step (2) in algorithms 2 and 3 ensures
that the in�ow and out�ow values of the boundary integral (8) balance, giving near equality
between the l2 and equidistribution norms. This is in contrast to the function approximation
case.
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Figure 5. Solution with degenerate triangles for the Yee shock re�ection problem.

8.3. Local sweeps

The sequence of operations in each of these interleaving algorithms can be carried out on a
purely local basis [3]. In applying (45) we in e�ect carry out a single local step of an inner
iteration for each equation. Such local steps involve only one node at a time and are cheap and
easy to implement. The iteration then continues by sweeping through the mesh repeatedly. By
interleaving local mesh update steps with local solution update steps the iteration can proceed
on a local basis, one node at a time. The sweeps through the mesh may be carried out in
either a Jacobi or Gauss–Seidel manner.
In e�ect a sequence of local problems in solved. Each mesh movement step is equivalent

to applying the minimizations of Section 5.1 to a local patch of triangles and reduces the
local l2 norm.
In Algorithm 3 the in�ow boundary values of the solution are overwritten at the end of

each sweep through the mesh, which violates the steepest descent monotonicity property of the
functional. However, this situation does not arise in the case of least squares mesh updates.

9. NUMERICAL RESULTS

We show results for a scalar case and an Euler case using Algorithm 2. The scalar case is
that of circular advection. Consider the scalar two-dimensional advection equation

a(x):∇u=0 (49)

where a(x)= (y;−x) in a rectangle −16x61; 06y61, which generates a semicircular hump
swept out by the initial data, here chosen to be

U =
{
1 −0:66x6−0:5
0 otherwise (50)

Results are shown in Figure 3 and nodes are seen to cluster towards the discontinuity under the
action of arclength equidistribution in the direction of the gradient of U . This is in contrast
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to the result in References [6; 8], using only one of the terms of (48), where only nodes
adjacent to the discontinuity move.
The Euler case is that of �ow in a channel with a 4% circular constriction on its lower

surface [10; 20]. The freestream Mach number is 1.4 and the initial calculation is carried out
on a regular 4096 mesh. The iterative strategy is an in Algorithm 2. The mesh movement
is run for 500 iterations after the functional has dropped by four orders of magnitude. The
overall number of time steps is such that the adaptation has a negligible e�ect on the average
expense per step. The �nal mesh is shown in Figure 4.
For an illustration of this use of degenerate triangles a result is shown for the Euler equa-

tions [21; 11]. The example exhibits the shock �tting capabilities of the method for a purely
supersonic �ow which has an exact solution [24].
The computational domain is of length 3 and width 1. Supersonic in�ow boundary condi-

tions, given by values U=(1:0; 2:9; 0:60)t and U=(1:7; 4:453;−0:86; 9:87)t of the conservative
variables, are imposed on the left and upper boundaries, respectively. At the right-hand bound-
ary supersonic out�ow conditions are applied, while the lower boundary is treated as a solid
wall.
The boundary conditions are chosen so that the shock enters the top left hand corner at

an angle of 29◦ to the horizontal and is re�ected by a �at plate on the lower boundary. The
�ow in regions away from shocks is constant.
The �gure (taken from Reference [11]) shows a shock re�ection problem in which a solution

obtained by a shock capturing multidimensional upwinding scheme has been improved by
adjusting the mesh using least squares �uctuation minimization with degenerate cells at the
shocks. The results are shown in Figure 4 where the density contours are plotted. The shock
comes in from the top left-hand corner at an angle of 29:2◦ to the horizontal and the solution is
virtually constant apart from the discontinuities, in close agreement with the analytic solution.

10. CONCLUSIONS

In this paper we have considered �uctuations and monitors de�ned on triangles which satisfy
an integral cancellation property over the internal edges of an unstructured mesh. For such
quantities the l2 norm and the l2 norm of the di�erences are minimized simultaneously.
Particular examples are the �uctuation associated with a system of conservation laws and
a vector-valued equidistributed function which can be used for multidimensional function
approximation.
The minimizations are carried out by a steepest descent approach which, in the function

approximation case, reduces to a simple averaging formula. For the �uctuation the relaxation
parameter associated with the steepest descent method may be chosen using a local quadratic
model which arises naturally when the solution variables are frozen.
The �uctuation used here, which is continuous across triangle edges, may be used with

degenerate triangles to position shocks [22]. By minimizing the �uctuation in a degenerate
triangle, which is a measure of satisfaction of the jump condition, an approximate position
of the shock can be found which may be manoeuvred into an accurate position using node
movement. The least squares minimization is carried out with respect to interior solution
parameters on either side of the shock, which gives a good approximation of the adjacent
smooth regions of the �ow.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:3–19



18 M. J. BAINES

Results from these mesh movement strategies, used in conjunction with a multidimensional
upwinding method, have been shown for three steady-state test cases, those of scalar circular
advection, gas �ow through a constricted channel, and a shock re�ection problem illustrating
the use of degenerate triangles.
Further developments include the extension to time dependent problems. In one approach

the mesh moves so that for example a conserved quantity remains invariant [25]. In another
approach [2] a steepest descent method has been used to generate mesh movement in the
context of a Stefan problem. It may be possible to develop the averaging formula (33) in
the same way as is done for MMPDEs in Reference [17]. Finally, the moving �nite element
(MFE) method [26], which is known to be optimal for certain steady state problems [4], has
the useful property that for scalar hyperbolic equations nodes move along the characteristics,
asymptotically carrying L2 best �ts [27].
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